Un problema di capacità con integrali

Ricevo da Maria Rita la seguente domanda:

 

Buonasera,

vorrei un chiarimento in merito al seguente esercizio (n.74, pag.24, Verso la seconda prova di matematica 2016).

 

Una vasca di gasolio In un magazzino di prodotti petroliferi il gasolio è stoccato in una vasca il cui contorno, riferito ad un sistema di riferimento cartesiano \(Oxy\), è delimitato dalle curve di equazione \(y=f(x)=-x^3+64x\) e \(y=0\), con \(x\) e \(y\) espressi in decimetri. La profondità della vasca è invece data, in ogni punto, dalla funzione \(h(x)=x^2-8x\). Calcola il peso massimo del gasolio che può essere immagazzinato, sapendo che il suo peso specifico è \(0,85\;kg/dm^3\).

 

Grazie.

 

Le rispondo così:

 

Cara Maria Rita,

si tratta di calcolare la capacità totale della vasca in decimetri cubi, utilizzando il seguente integrale (in ogni punto dell’intervallo \(0\le x\le 8\) una sezione della vasca perpendicolare al piano \(xy\) è costituita da un rettangolo di lati \(|f(x)|=-x^3+64x\) e \(|h(x)|=-x^2+8x\)): \[V=\int\limits_{0}^{8}{\left( -{{x}^{3}}+64x \right)\left( -{{x}^{2}}+8x \right)dx}=\int\limits_{0}^{8}{\left( {{x}^{5}}-8{{x}^{4}}-64{{x}^{3}}+512{{x}^{2}} \right)dx}=\]\[=\left[ \frac{1}{6}{{x}^{6}}-\frac{8}{5}{{x}^{5}}-\frac{64}{4}{{x}^{4}}+\frac{512}{3}{{x}^{3}} \right]_{0}^{8}=\frac{{{8}^{6}}}{20}=13107,2\ d{{m}^{3}}\]

da cui il peso massimo del gasolio immagazzinabile nella vasca: \[13107,2\cdot 0,85=11141,12\,kg\quad .\]

Massimo Bergamini

Per la lezione

Prosegui la lettura