Aula di Scienze

Aula di Scienze

Persone, storie e dati per capire il mondo

Speciali di Scienze
Materie
Biologia
Chimica
Fisica
Matematica
Scienze della Terra
I blog
Sezioni
Come te lo spiego
Science News
Interviste
Video
Animazioni
L'esperto di matematica
L'esperto di fisica
L'esperto di chimica
Chi siamo
Cerca

Teorema di Guldino

Elisa propone il seguente quesito: Dato il triangolo \(ABC\) acutangolo con \(AB=13\) e \(BC=15\) si sa che il suo baricentro e quello del suo contorno giacciono su una retta parallela ad \(AC\). Determinare l’area del triangolo sapendo che il raggio della circonferenza in esso inscritta misura \(4\).
Ricevo da Elisa la seguente domanda:   Caro Professore, vorrei capire questo quesito. Dato il triangolo \(ABC\) acutangolo con \(AB=13\) e \(BC=15\) si sa che il suo baricentro e quello del suo contorno giacciono su una retta parallela ad \(AC\). Determinare l’area del triangolo sapendo che il raggio della circonferenza in esso inscritta misura \(4\).   Grazie.   Le rispondo così:   Cara Elisa, avendo collocato il triangolo \(ABC\) in un riferimento cartesiano in modo tale che sia \(A(0,0)\) e \(C(2x,0)\), detta \(h=BH\) l’altezza relativa al lato \(AC\), dall’ipotesi che il baricentro \(G\) del triangolo e il baricentro \(L\) del contorno del triangolo stesso giacciano su una retta parallela ad \(AC\) segue che l’ordinata di \(L\) è \(\frac{h}{3}\), essendo tale l’ordinata del baricentro \(G\), essendo questa pari ad un terzo dell’ordinata \(h\) di \(B\). Per il primo teorema di Guldino, la superficie (doppio cono) generata dalla rotazione del contorno di \(ABC\) intorno alla retta \(AC\), cioè l’asse \(x\), è equivalente al prodotto tra la circonferenza di raggio pari alla distanza del baricentro \(L\) del contorno dall’asse di rotazione (cioè l’ordinata di \(L\)) e la lunghezza di tale contorno, cioè il perimetro di \(ABC\), per cui, posto \(AC=2x\), si deve avere:      \[\frac{2}{3}\pi h\left( 28+2x \right)=15\pi h+13\pi h\to 28+2x=42\to x=7\] e poiché il raggio \(r\) della circonferenza inscritta in un triangolo, il semiperimetro \(p\) e l’area \(S\) del triangolo stesso soddisfano la relazione generale \(S=r\cdot p\), si ha l’area \(S\) richiesta: \[S=4\left( 14+x \right)=4\cdot 21=84\quad .\] Massimo Bergamini
figura1337

Devi completare il CAPTCHA per poter pubblicare il tuo commento

Home zanichelli.it Ricerca in catalogo Contatti Home scuola Catalogo scuola Bisogni Educativi Speciali (BES) Formazione docenti Siti dei libri di testo Idee per insegnare in digitale Educazione civica per l'Agenda 2030 ZTE Zanichelli Test Collezioni Crea Verifiche Tutte le prove Verso l'INVALSI Tutti i siti Zanichelli per la scuola Home università Catalogo università Area docenti Area studenti Preparazione test di ammissione ZTE università ZTE UniTutor Collezioni Università Home dizionari Catalogo dizionari Dizionari digitali Dizionari Più Giuridico Manuali e saggi Medico professionale Chi siamo Contatti Area stampa Per acquisti online Filiali e agenzie Privacy e cookie Condizioni d’uso Centro assistenza