Aula di Scienze

Aula di Scienze

Persone, storie e dati per capire il mondo

Speciali di Scienze
Materie
Biologia
Chimica
Fisica
Matematica
Scienze della Terra
Tecnologia
I blog
Sezioni
Come te lo spiego
Science News
Podcast
Interviste
Video
Animazioni
L'esperto di matematica
L'esperto di fisica
L'esperto di chimica
Chi siamo
Cerca
Matematica

Un problema di geometria

Rispondo a Leonardo in merito ad un problema di geometria su circonferenza, corde, triangoli rettangoli.
leggi
Ricevo da Leonardo la seguente domanda:   Gentilissimo professore, non riesco a risolvere il seguente problema:   In una circonferenza di centro \(O\), considera una corda \(AB\) lunga \(6\sqrt{2}a\), e sul suo prolungamento dalla parte di \(B\), un punto \(C\) tale che \(AB/BC=2\sqrt{2}(\sqrt{3}+\sqrt{2})\). Da \(C\) traccia una tangente alla circonferenza: siano \(D\) il punto di tangenza, \(E\) il punto d’intersezione del raggio \(OD\) con la corda \(AB\), \(H\) il piede della perpendicolare da \(O\) ad \(AB\). Sapendo che \(DE\) è \(\sqrt{3}a\), calcola: a) la lunghezza di \(CD\); b) l’area del triangolo \(DCE\).   Grazie.   Gli rispondo così:   Caro Leonardo, con riferimento alla figura, dalla proporzione assegnata ricaviamo subito che \(BC=3\left( \sqrt{3}-\sqrt{2} \right)a\) e quindi che \(HC=3\sqrt{3}a\). Applicando il teorema di Pitagora ai triangoli rettangoli \(OHC\), \(OHB\) e \(ODC\), abbiamo: \[O{{C}^{2}}=O{{H}^{2}}+27{{a}^{2}},\ O{{B}^{2}}=O{{H}^{2}}+18{{a}^{2}},\ C{{D}^{2}}+O{{D}^{2}}=O{{C}^{2}}\to \]\[\to O{{H}^{2}}+18{{a}^{2}}+C{{D}^{2}}=O{{H}^{2}}+27{{a}^{2}}\to\] \[C{{D}^{2}}=27{{a}^{2}}-18{{a}^{2}}\to CD=3a\quad .\] Quindi l’area l’area del triangolo \(DCE\) è \(\frac{3\sqrt{3}}{2}{{a}^{2}}\). Massimo Bergamini
figura1331

Devi completare il CAPTCHA per poter pubblicare il tuo commento