Aula di Scienze

Aula di Scienze

Persone, storie e dati per capire il mondo

Speciali di Scienze
Materie
Biologia
Chimica
Fisica
Matematica
Scienze della Terra
I blog
Sezioni
Come te lo spiego
Science News
Interviste
Video
Animazioni
L'esperto di matematica
L'esperto di fisica
L'esperto di chimica
Chi siamo
Cerca

Volumi e integrali

Rispondo ad Evarist in merito al seguente quesito: Calcola il volume del solido che ha come base la regione finita di piano delimitata dalla curva di equazione assegnata e dall’asse \(x\) nell’intervallo segnato a fianco e come sezioni perpendicolari all’asse \(x\) quelle indicate: \[y=\sqrt{{{x}^{3}}-x},\quad \left[ 1;4 \right];\quad \text{semicerchi}.\]
Ricevo da Evarist la seguente domanda:   Salve professore, ho incontrato problemi con il seguente quesito (n.82, pag.303, Matutor):   Calcola il volume del solido che ha come base la regione finita di piano delimitata dalla curva di equazione assegnata e dall’asse \(x\) nell’intervallo segnato a fianco e come sezioni perpendicolari all’asse \(x\) quelle indicate: \[y=\sqrt{{{x}^{3}}-x},\quad \left[ 1;4 \right];\quad \text{semicerchi}.\] Grazie.   Gli rispondo così:   Caro Evarist(e) (Galois?), si tratta di “sommare” in senso integrale, nell’intervallo assegnato, i volumi di sezioni (semicirconferenze di raggio \(y/2\)) di area \(S\left( x \right)=\frac{1}{2}\pi {{\left( \frac{\sqrt{{{x}^{3}}-x}}{2} \right)}^{2}}=\frac{\pi }{8}\left( {{x}^{3}}-x \right)\) e “spessore” \(dx\): \[V=\frac{\pi }{8}\int\limits_{1}^{4}{\left( {{x}^{3}}-x \right)dx}=\frac{\pi }{8}\left[ \frac{1}{4}{{x}^{4}}-\frac{1}{2}{{x}^{2}} \right]_{1}^{4}=\frac{\pi }{8}\left( 56+\frac{1}{4} \right)=\frac{225}{32}\pi \quad .\] Massimo Bergamini
figura1330

Devi completare il CAPTCHA per poter pubblicare il tuo commento

Home zanichelli.it Ricerca in catalogo Contatti Home scuola Catalogo scuola Bisogni Educativi Speciali (BES) Formazione docenti Siti dei libri di testo Idee per insegnare in digitale Educazione civica per l'Agenda 2030 ZTE Zanichelli Test Collezioni Crea Verifiche Tutte le prove Verso l'INVALSI Tutti i siti Zanichelli per la scuola Home università Catalogo università Area docenti Area studenti Preparazione test di ammissione ZTE università ZTE UniTutor Collezioni Università Home dizionari Catalogo dizionari Dizionari digitali Dizionari Più Giuridico Manuali e saggi Medico professionale Chi siamo Contatti Area stampa Per acquisti online Filiali e agenzie Privacy e cookie Condizioni d’uso Centro assistenza