Aula di scienze

Aula di scienze

Persone, storie e dati per capire il mondo

Speciali di Scienze
Materie
Biologia
Chimica
Fisica
Matematica
Scienze della Terra
Tecnologia
I blog
Sezioni
Come te lo spiego
Science News
Podcast
Interviste
Video
Animazioni
L'esperto di matematica
L'esperto di fisica
L'esperto di chimica
Chi siamo
Cerca
L'esperto di matematica

Probabilità e geometria

Ricevo da Enrico il seguente quesito: Trovare la probabilità di colpire una sfera, inscritta in un cono equilatero di dato raggio di base. Tale bersaglio è fermo ed è posto verticalmente alla traiettoria del proiettile considerato di dimensioni non significative.
leggi
Ricevo da Enrico la seguente domanda:   Caro professore, devo trovare la probabilità di colpire una sfera, inscritta in un cono equilatero di dato raggio di base. Tale bersaglio è fermo ed è posto verticalmente alla traiettoria del proiettile considerato di dimensioni non significative.   Grazie.   Gli rispondo così:   Caro Enrico, supponendo che il tiratore colpisca sempre il cono e sempre con una traiettoria di tiro perpendicolare all’asse del cono, e che ogni punto del cono venga colpito con la stessa probabilità, possiamo ricavare la probabilità \(p\) che sia colpita la sfera come il rapporto tra la superficie \(S_s\) del cerchio inscritto nel triangolo equilatero di lato \(2r\) che rappresenta la sezione del cono equilatero contenente l’asse di simmetria e la superficie \(S_t\) del triangolo stesso, cioè, ricordando che il centro della circonferenza inscritta nel triangolo equilatero è pari ad \(1/3\) dell’altezza: \[p=\frac{{{S}_{s}}}{{{S}_{t}}}=\frac{\frac{\pi }{3}{{r}^{2}}}{\sqrt{3}{{r}^{2}}}=\frac{\sqrt{3}}{9}\pi \approx 60,46\%\quad .\] Massimo Bergamini
figura1333

Devi completare il CAPTCHA per poter pubblicare il tuo commento