Aula di Scienze

Aula di Scienze

Persone, storie e dati per capire il mondo

Speciali di Scienze
Materie
Biologia
Chimica
Fisica
Matematica
Scienze della Terra
I blog
Sezioni
Come te lo spiego
Science News
Interviste
Video
Animazioni
L'esperto di matematica
L'esperto di fisica
L'esperto di chimica
Chi siamo
Cerca

Un problema di capacità con integrali

Maria Rita propone un quesito in cui si tratta di calcolare il volume di un solido di sezioni note utilizzando il calcolo integrale.
Ricevo da Maria Rita la seguente domanda:   Buonasera, vorrei un chiarimento in merito al seguente esercizio (n.74, pag.24, Verso la seconda prova di matematica 2016).   Una vasca di gasolio In un magazzino di prodotti petroliferi il gasolio è stoccato in una vasca il cui contorno, riferito ad un sistema di riferimento cartesiano \(Oxy\), è delimitato dalle curve di equazione \(y=f(x)=-x^3+64x\) e \(y=0\), con \(x\) e \(y\) espressi in decimetri. La profondità della vasca è invece data, in ogni punto, dalla funzione \(h(x)=x^2-8x\). Calcola il peso massimo del gasolio che può essere immagazzinato, sapendo che il suo peso specifico è \(0,85\;kg/dm^3\).   Grazie.   Le rispondo così:   Cara Maria Rita, si tratta di calcolare la capacità totale della vasca in decimetri cubi, utilizzando il seguente integrale (in ogni punto dell’intervallo \(0\le x\le 8\) una sezione della vasca perpendicolare al piano \(xy\) è costituita da un rettangolo di lati \(|f(x)|=-x^3+64x\) e \(|h(x)|=-x^2+8x\)): \[V=\int\limits_{0}^{8}{\left( -{{x}^{3}}+64x \right)\left( -{{x}^{2}}+8x \right)dx}=\int\limits_{0}^{8}{\left( {{x}^{5}}-8{{x}^{4}}-64{{x}^{3}}+512{{x}^{2}} \right)dx}=\]\[=\left[ \frac{1}{6}{{x}^{6}}-\frac{8}{5}{{x}^{5}}-\frac{64}{4}{{x}^{4}}+\frac{512}{3}{{x}^{3}} \right]_{0}^{8}=\frac{{{8}^{6}}}{20}=13107,2\ d{{m}^{3}}\] da cui il peso massimo del gasolio immagazzinabile nella vasca: \[13107,2\cdot 0,85=11141,12\,kg\quad .\] Massimo Bergamini

Devi completare il CAPTCHA per poter pubblicare il tuo commento

Home zanichelli.it Ricerca in catalogo Contatti Home scuola Catalogo scuola Bisogni Educativi Speciali (BES) Formazione docenti Siti dei libri di testo Idee per insegnare in digitale Educazione civica per l'Agenda 2030 ZTE Zanichelli Test Collezioni Crea Verifiche Tutte le prove Verso l'INVALSI Tutti i siti Zanichelli per la scuola Home università Catalogo università Area docenti Area studenti Preparazione test di ammissione ZTE università ZTE UniTutor Collezioni Università Home dizionari Catalogo dizionari Dizionari digitali Dizionari Più Giuridico Manuali e saggi Medico professionale Chi siamo Contatti Area stampa Per acquisti online Filiali e agenzie Privacy e cookie Condizioni d’uso Centro assistenza