Aula di Scienze

Aula di Scienze

Persone, storie e dati per capire il mondo

Speciali di Scienze
Materie
Biologia
Chimica
Fisica
Matematica
Scienze della Terra
I blog
Sezioni
Come te lo spiego
Science News
Interviste
Video
Animazioni
L'esperto di matematica
L'esperto di fisica
L'esperto di chimica
Chi siamo
Cerca

Rette e piani nello spazio

Ettore propone due quesiti di geometria analitica dello spazio.
Ricevo da Ettore la seguente domanda:   Salve professore, avrei  bisogno del suo aiuto riguardo ai seguenti esercizi (n.88, pag.1112, n.93, pag.1113, Matematica.blu 2.0).   1) Determina il luogo dei punti equidistanti dai tre punti \(A(3;0;0)\), \(B(5;0;6)\), \(C(0;4;0)\).   2) Verifica se la retta \(r\) di equazioni \(\left\{ \begin{align}  & 2x-y+z-1=0 \\ & 5x+3y-8=0 \\ \end{align} \right.\)  è parallela al piano di equazione \(x-y+z+10=0\). Grazie.   Gli rispondo così:   Caro Ettore, nel primo caso, detto \(P(x;y;z)\) un generico punto del luogo da determinare, possiamo scrivere le seguenti equazioni: \[PA=PB\to {{\left( x-3 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}={{\left( x-5 \right)}^{2}}+{{y}^{2}}+{{\left( z-6 \right)}^{2}}\]\[PA=PC\to {{\left( x-3 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}={{x}^{2}}+{{\left( y-4 \right)}^{2}}+{{z}^{2}}\] \[PC=PB\to {{x}^{2}}+{{\left( y-4 \right)}^{2}}+{{z}^{2}}={{\left( x-5 \right)}^{2}}+{{y}^{2}}+{{\left( z-6 \right)}^{2}}\] da cui: \[x+3z-13=0\quad \wedge \quad 6x-8y+7=0\quad \wedge \quad 10x-8y+12z-45=0\quad .\] Il luogo è una retta poiché sia l’intersezione della coppia di piani \(x+3z-13=0\ \wedge \ 6x-8y+7=0\), sia l’intersezione della coppia \(6x-8y+7=0\ \wedge \ 10x-8y+12z-45=0\), sia l’intersezione della coppia \(x+3z-13=0\ \wedge \ 10x-8y+12z-45=0\), sono tutte equivalenti. Nel secondo caso, basta controllare se il vettore direttivo del piano sia o meno perpendicolare al vettore direttivo della retta, condizione necessaria e sufficiente affinchè piano e retta siano paralleli, salvo che la retta non sia appartenente al piano stessa, cosa subito esclusa poiché è possibile trovare  un punto della retta che non appartiene al piano: riscritta la retta in modo parametrico        \[\left\{ \begin{align}  & x=t \\ & y=-\frac{5}{3}t+\frac{8}{3} \\ & z=-\frac{11}{3}t+\frac{11}{3} \\ \end{align} \right.\] si vede che il punto \((1;1;0)\) appartiene alla retta ma non al piano. Il vettore direttivo della retta è \(\vec{v}\left( 1,-\frac{5}{3},-\frac{11}{3} \right)\), quello del piano è \(\vec{w}\left( 1,-1,1 \right)\) e \(\vec{v}\cdot \vec{w}\ne 0\), cioè i vettori non sono perpendicolari: retta e piano non sono paralleli, infatti hanno in comune il punto \(P\) che si ottiene risolvendo la seguente: \[t+\frac{5}{3}t-\frac{8}{3}-\frac{11}{3}t+\frac{11}{3}+10=0\to t=11\to P\left( 11;-\frac{47}{3};-\frac{110}{3} \right)\ .\] Massimo Bergamini

Devi completare il CAPTCHA per poter pubblicare il tuo commento

Home zanichelli.it Ricerca in catalogo Contatti Home scuola Catalogo scuola Bisogni Educativi Speciali (BES) Formazione docenti Siti dei libri di testo Idee per insegnare in digitale Educazione civica per l'Agenda 2030 ZTE Zanichelli Test Collezioni Crea Verifiche Tutte le prove Verso l'INVALSI Tutti i siti Zanichelli per la scuola Home università Catalogo università Area docenti Area studenti Preparazione test di ammissione ZTE università ZTE UniTutor Collezioni Università Home dizionari Catalogo dizionari Dizionari digitali Dizionari Più Giuridico Manuali e saggi Medico professionale Chi siamo Contatti Area stampa Per acquisti online Filiali e agenzie Privacy e cookie Condizioni d’uso Centro assistenza